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We investigate the electrostatic contribution to the persistence length of a semiflexible polymer chain whose
segments interact via a screened Debye-Hückel dipolar interaction potential. We derive the expressions for the
renormalized persistence length on the level of a 1/D-expansion method already successfully used in other
contexts of polyelectrolye physics. We investigate different limiting forms of the renormalized persistence
length of the dipolar chain and show that, in, general, it depends less strongly on the screening length than in
the context of a monopolar chain. We show that for a dipolar chain the electrostatic persistence length in the
same regime of the parameter phase space as the original Odijk-Skolnick-Fixman(OSF) form for a monopolar
chain depends logarithmically on the screening length rather than quadratically. This can be understood solely
on the basis of a swifter decay of the dipolar interactions with separation compared to the monopolar electro-
static interactions. We comment also on the general contribution of higher multipoles to the electrostatic
renormalization of the bending rigidity.
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I. INTRODUCTION

Semiflexible polyelectrolytes are ubiquitous in biological
context ranging from biopolymers such as DNA, filamentous
F actin, microtubules, and then all the way to molecular
aggregates such as micelles or even whole organisms as in
bacterialfd viruses or the tobacco mosaic virus. In all these
cases we are dealing with objects that at an appropriate scale
behave as Euler-Kirchhoffian elastic filaments. The most im-
portant mechanical characteristics in these molecular systems
is the persistence length stemming from the bending rigidity
of the polymer that can exhibit enormous variation in mag-
nitude bracketted by nm on the lower end and mm on the
upper end.

The bending rigidity and thus the persistence length is a
consequence of short range atomic and molecular interac-
tions and is itself a mesoscopic property[1]. For charged
semiflexible polymers the long range nature of the electro-
static interactions modifies the value of the persistence
length as is well known from the seminal work of Odijk,
Skolnick, and Fixman(OSF) [2]. Recent detailed critical as-
sessment of the OSF conjecture[3–5] confirmed the univer-
sality of the dependence of the persistence length on the
parameters of the electrostatic interaction. It appears that the
OSF behavior characterized by the inverse dependence of the
persistence length on the ionic strength of the bathing me-
dium is quite robust. One of the main ingredients of the OSF
ideology is a complete lack of any atomic or molecular
specificity in the interaction between charge segments along
the polyelectrolyte. By assumption the mobile charges in so-
lution and the fixed charges on the polyelectrolyte backbone
interact only via generic(screened) Coulomb interaction.
Though this assumption seems to be reasonable it would be
appropriate to investigate what kind of behavior of persis-
tence length is conferred by the effects of strong specificity
as in, e.g., the case of specific ion adsorption. Recent experi-

ments also suggest that reevaluation of the basic assumptions
in our understanding of counterion-backbone interactions in
polyelectrolytes would be highly desirable[6].

In specific ion adsorption mobile charges from the bathing
solution and fixed charges along the polyelectrolyte can com-
bine, leading to the emergence of higher multipoles along the
polyelectrolyte chain, the first one being a dipole stemming
from the association of a negative fixed charge and a specifi-
cally adsorbed mobile positive charge from the bathing solu-
tion. The same situation though for different reasons, specifi-
cally due to the low dielectric constant environment, could
be obtained also in the context of ionomers[7]. Similar con-
sideration could apply also to magneto- and electrorheologi-
cal fluids in external fields.

Muthukumar [8] was the first to realize the importance
and the extent of modifications wrought by the first higher
multipole, i.e., the dipole, on the behavior of a flexible poly-
electrolyte described on the level of the Edwards Hamil-
tonian. He discovered the formation of localized aggregated
structures along the chain that dominate the statistical behav-
ior of the flexible polyelectrolyte chain. They are character-
ized by a different scaling of the size of the chain with re-
spect to its length and depend continuously on the
parameters of the dipolar interaction potential.

Chain flexibility as formalized by the Edwards Hamil-
tonian [9] is essential for emergence of this type of aggre-
gated structures. Now assume a dipolarsemiflexiblechain,
described as an Euler-Kirchhoffian filament with dipolar in-
tersegment interactions. On top of that assume that the length
of the chain is the largest length in the problem. This consti-
tutes a complementary limit to be contrasted with the Muthu-
kumar calculation. The analysis provided by Muthukumar
and the one detailed below should thus brackett the behavior
of any real polyelectrolyte chain with dipolar charges along
its length.
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The problem with dipolar interactions is that they depend
on the local orientation of the polyelectrolyte segments. This
complicates the evaluation of the partition function of the
semiflexible chain in an essentail manner. In order to make
this complicated problem tractable, we will invoke the
1/D-expansion method[11] that has already been success-
fully applied to the problem of persistence length renormal-
ization of a semiflexible polyelectrolyte chain[12] with mo-
nopolar charges. This will allow us to explicitly evaluate the
electrostatic contribution to the persistence length of a dipo-
lar chain. As a point of departure we will assume that the
dipolar charges along the chain interact via a screened Cou-
lombic interaction potential, the range of which is character-
ized by the Debye screening length[13]. We will derive the
complete dependence of the electrostatic persistence length
on the parameters of the dipolar interaction potential and
show that it leads to a different behavior regarding its depen-
dence on the ionic strength of the bathing solution then the
standard OSF result. We find basically two different regimes
for the bahavior of the electrostatic persistence length of a
dipolar chain.

• For small but nonvanishing values of the screening
length lD the electrostatic contribution to the persistence
length behaves as

LP
sRd = LP

s0d + const3 ln lD,

whereLP
s0d is the bare value of the persistence length. This

expression would superseed the OSFlD
2 result valid for mo-

nopolar interactions. Obviously the dipolar electrostatic
renormalization of the persistence length depends more gen-
tly on the screening length.

• For large values of the screening lengthlD the electro-
static contribution to the persistence length behaves as

LP
sRd = const3 lD

b ,

whereb equals either 3/4 or 3, depending on the strength of
the dipolar interaction. This result should be compared with
various variational estimates of a sub-OSF behavior for a
monopolar chain that lead tob in the vicinity of 1.

These two regimes stem from two different limiting forms
of a single equation giving the renormalized value of the
persistence length as a function of the parameters describing
the dipolar interactions along the chain. We also present
complete numerical solutions of this equation in various re-
gions of the parameter space.

The outline of the paper is as follows. In Sec. I we first
rewrite the Hamiltonian of a semiflexible polymer chain with
screened dipolar interactions, assumed to be composed of the
Euler-Kirchhoff elastic energy and the interaction energy, in
a form that allows for a straightforward application of the
1/D-expansion ansatz. We assume that the dipoles of the
polymer segments are oriented along the local tangent vec-
tors of the chain. This effective Hamiltonian captures the
elasticity of the chain, the inextensibility of the chain and the
fact that electrostatic interactions depend on the position of
the interacting segments as well as their orientation. Section
II introduces all the important approximations in order to
make the evaluation of the partition function of the chain
tractable. A diagonalization ansatz is introduced for the ori-

entational part of the Hamiltonian, a global inextensibility
constraint is substituted for the local one and a saddle point
evaluation is introduced for all the auxiliary fields that do not
enter the Hamiltonian on a quadratic level. In Sec. III the
saddle point equations are solved explicitly by expanding all
the Fourier components of different auxiliary fields to the
fourth order. This is consistent with the semiflexible ansatz
for the configurational part of the Hamiltonian of the chain.
Section IV introduces explicit equations for the bending ri-
gidity renormalization that follow from the saddle point
equations of the previous section. These equations are solved
numerically in the last section. Different limiting forms of
the numeric solutions for limited regions of the parameter
phase space are derived also analytically. We take a critical
look at the results derived in this work and comment on the
implied limitations of their validity and their connection with
previous work on the electrostatic renormalization of the ri-
gidity of semiflexible polymers.

II. THE EFFECTIVE HAMILTONIAN

We investigate a semiflexible polymer chain with dipolar
charges along the chain. The dipoles can be either structural
or they can be a consequence of the specific adsorption of,
e.g., positive mobile charges from the bathing solution onto
the fixed negative charges on the polyelectrolyte backbone.
The total interaction energy of the chain is given by

1

2
E

0

L E
0

L

V„r ssd,r ss8d…dsds8, s1d

where

V„r ssd,r ss8d… =
e−kur ssd−r ss8du

4pee0ur ssd − r ss8du5
„ur ssd − r ss8du2f1 + kur ssd

− r ss8dugpssd ·pss8d − h3 + 3kur ssd − r ss8du

+ fkur ssd − r ss8dug2jhpssd · fr ssd − r ss8dgj

3hpss8d · fr ssd − r ss8dgj… s2d

with ur ssd−r ss8du the separation between two segments lo-
cated atr ssd and r ss8d along the chain,s is the arclength of
the chain, andpssd and pss8d are dipoles per unit length
located ats ands8. The above form of the screened dipolar
interaction follows straightforwardly from the second order
multipole expansion of the screened Coulomb kernel[14]
and reduces to the usual form of the dipolar interaction in the
limit of no screening. On the Debye-Hückel levelk=lD

−1,
where lD is the Debye screening length. We furthermore
assume that the dipole per unit length along the chain is
given by

pssd = p0]sr ssd, s3d

where p0 is the strength of the dipolar moment per unit
length of the segment and]sr ssd= ṙ ssd is the unit tangent
vector. It is thus assumed that the dipoles point along the
chain, and that the component of the dipoles perpendicular to
the local axis of the chain is averaged out to zero. Or model
is thus “perpendicular” to the case investigated in the context
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of protein folding[15]. The interactions along the chain are
therefore described with a generic form of segment-segment
interactions that can be cast into the form

V„r ssd,r ss8… = VR„r ssd − r ss8d…]sr ssd]s8r ss8d

− VP„r ssd − r ss8d…h]sr ssd · fr ssd − r ss8dgj

3h]s8r ss8d · fr ssd − r ss8dgj, s4d

with

VR„r ssd − r ss8d… = v0
e−kur ssd−r ss8du

ur ssd − r ss8du3
f1 + kur ssd − r ss8dug,

VP„r ssd − r ss8d… = v0
e−kur ssd−r ss8du

ur ssd − r ss8du5
f3 + 3kur ssd − r ss8du

+ k2ur ssd − r ss8du2g. s5d

Obviously the interaction(4) depends on the positions of the
interacting segments as well as on their orientation. This is
the fundamental difference between monopolar and dipolar
interactions. We have defined

v0 =
p0

2

4pee0
= kBT lBSp0

2

e0
2D , s6d

where lB is the Bjerrum length[13]. The units ofv0 are
energy times length and are thus the same as the units of
bending modulus of a semiflexible polymer chain.

The generic form of the interaction(4) together with the
Euler-Kirchhoffian elastic conformational part of the mesos-
copic free energy[16] can now be used to investigate the
statistical behavior of a semiflexible dipolar chain. The me-
soscopic Hamiltonian of the chain can be written canonically
as

Hfr ssdg =
1

2
KCE

0

L

dsf]s
2r ssdg2

+
1

2
E

0

L E
0

L

dsds8V„r ssd,r ss8d…. s7d

where the local curvature is

]s
2r ssd =

]2r ssd
] s2 . s8d

The bending rigidityKC is connected with the bare persis-
tence length viaKC=kBT LP

s0d. Since in what follows the
chain is assumed to be inextensible an additional constraint
of ]sr ssd]sr ssd=1 should be taken into account. The partition
function thus assumes the form

J =E Dfr ssdgPsd
3
„f]sr ssdg2 − 1… exp −bHfr ssdg. s9d

There are two difficult problems connected with this parti-
tion function: first of all we have the constraint of inextensi-
bility that has to be enforced locally for every conformation
of the chain, and on top of this there is the nonlocality of the
segment-segment interaction potential that couples different

segments along the chain and also depends on their orienta-
tion. We will address both problems systematically by apply-
ing the method of Lagrange multipliers[12].

To this effect we will introduce two additional terms into
the interaction Hamiltonian. The inextensibility constraint is
dealt with via the Lagrange multiplierlssd, leading to an
additional term in the Hamiltonian of the form

dH1 =
1

2
E dslssdhf]sr ssdg2 − 1j s10d

together with an additional trace overlssd in the expression
for the partition function. In what follows we will assume
that the inextensiblity constraint can be implemented glo-
bally instead of locally[17]. This automatically means that
lssd=l. The nonlocality of the interaction potential is more
difficult to deal with then in the case of a chain without
orientationally dependent interactions. In order to pave the
way for an approximate evaluation of the partition function
we introduce two new Lagrange multipliers in the form of
two tensorial auxiliary fields. First of all we define

Bikss,s8d = fr issd − r iss8dgfr kssd − r kss8dg s11d

and then

Tikss,s8d = ]sr issd]sr kssd. s12d

We notice immediately these two fundamental identities

Tr Bikss,s8d = „r ssd − r ss8d…2 and

Tr Tikss,s8d = ]sr ssd · ]sr ssd. s13d

We thus conclude that TrBikss,s8d is equivalent toBss,s8d
introduced in the context of orientationaly independent intra-
chain interactions[12]. Introducing furthermore the follow-
ing two additional coupling terms:

dH2 =
1

2
E E dsds8gikss,s8d„fr issd − r iss8dgfr kssd − r kss8dg

− Bikss,s8d…,

dH3 =
1

2
E E dsds8pikss,s8d„]sr issd]sr kssd − Tikss,s8d…,

s14d

we can write the partition function in the form

J =E Dfr ssdgDflssdgDfgikssdgDfBikssdg

3DfpikssdgDfTikssdgexp −bHfr ssdg, s15d

where the effective HamiltonianH̄fr ssdg is given by

H̄fr ssdg = Hfr ssdg + dH1fr ssdg + dH2fr ssdg + dH3fr ssdg.

s16d

The new auxiliary fieldsgikss,s8d and pikss,s8d thus act as
tensorial Lagrange multipliers setting the constraintsfr issd
−r iss8dgfr kssd−r kss8dg−Bikss,s8d=0 and ]sr issd]sr kssd
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−Tikss,s8d=0. In the new variable space the segment-
segment interaction potential can be obtained in a more
transparent form as

V„r ssd,r ss8d… = VR„Tr Bikss,s8d…Tr Tikss,s8d

− VP„Tr Bikss,s8d…Bikss,s8dTikss,s8d

= V„Bikss,s8d,Tikss,s8d…. s17d

In order to arrive at a more transparent form of the partition
function we furthermore introduce the following two new
variables:

lik
scdss,s8d = l dikdss− s8d + pikss,s8d,

gik
scdss,s8d =

1

2
dss− s8d E ds9fgikss,s9d + gikss9,s8dg − gikss,s8d.

s18d

With these new definitions the effective Hamiltonian can be
finally reduced to this fairly complicated form

H̄fr ssdg =
1

2
KCE ds„]s

2r ssd…2 −
1

2
lE ds+

1

2
E E dsds8lik

scd

3ss,s8d]sr issd]sr kssd +
1

2
E E dsds82gik

scd

3ss,s8dr issdr kssd −
1

2
E E dsds8gikss,s8dBikss,s8d

−
1

2
E E dsds8pikss,s8dTikss,s8d

+
1

2
E E dsds8V„Bikss,s8d,Tikss,s8d…. s19d

The above form of the Hamiltonian together with Eq.(15)
represents at this stage an exact expression for the partition
function. This is the starting point of different approxima-
tions introduced below.

Though the above form of the effective Hamiltonian looks
prohibitively complicated it can in fact be reduced to analyti-
cal quadratures provided one devises a powerful enough ap-
proximation scheme. It was shown in recent work[12,18,19]
that the 1/D-expansion method, whereD here and below is
the dimensionality of the embedding space, can be fruitfully
applied to polymer problems of the above type and we will
use our experience gained in the context of monopolar inter-
actions[12] to also tackle the more complicated case of mul-
tipolar interactions as implied by the Hamiltonian(19).

III. THE ANSATZ

Our rationale for writing the effective Hamiltonian in the
form (19) is that it will be shown to be amenable to straight-
forward approximations leading to a closed form evaluation
of the partition function. Similar methods have been already
used successfully in the context of monopolar interactions.
First of all we will introduce a diagonalization ansatz of the
form

gikss,s8d = gss,s8ddik,

pikss,s8d = pss,s8ddik. s20d

Though this ansatz is not absolutely necessary in order to
make progress in the evaluation of the partition function Eq.
(15), it certainly makes the whole calculation manageable
and controllable, reducing its overall complexity to a bare
minimum. The above ansatz also clearly implies

gik
scdss,s8d = gscdss,s8ddik,

lik
scdss,s8d = lscdss,s8ddik. s21d

In order to be consistent we must also introduce the same
type of diagonalization ansatz for the fieldsBikss,s8d and
Tikss,s8d, which are conjugate to the fieldsgikss,s8d and
pikss,s8d. We formulate this as

Bikss,s8d =
1

DBss,s8ddik,

Tikss,s8d =
1

DTss,s8ddik. s22d

In this way we can write TrBikss,s8d=Bss,s8d and
Tr Tikss,s8d=Tss,s8d. Since we are not concerned here with
explicit analysis of finite size effects we can assume overall
that thess,s8d dependencies actually reduce toss−s8d. Simi-
larly to the case of orientationally independent intrachain
interactions we see that the partition function is now qua-
dratic inr ssd and its first and second derivatives. We can thus
trace over these harmonic degrees of freedom[12]. Expand-
ing the whole effective Hamiltonian around a reference con-
figuration r 0ssd and introducing the Fourier components of
different fields in the standard way we obtain after tracing
out the harmonic degrees of freedom the following form of
the effective Hamiltonian:

H̄ = H̄fr 0ssdg +
DkBT

2 o
Q

ln GsQd −
1

2
lE ds

−
1

2
E E dsds8gss,s8dBss,s8d

−
1

2
E E dsds8pss,s8dTss,s8d

+
1

2
E E dsds8V„Bss,s8d,Tss,s8d…, s23d

where the self-energy functionGsQd is given by

GsQd = fKCQ4 + lscdsQdQ2 + 2gscdsQdg. s24d

Here lscdsQd and gscdsQd are of course the Fourier compo-
nents of the fieldsgscdss−s8d and lscdss−s8d. The Hamil-
tonian of the reference configurationr 0ssd can be derived as
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H̄fr 0ssdg =
1

2
KCE dsf]s

2r 0ssdg2 +
1

2
E E dsds8lscdss− s8d

3f]sr 0ssd · ]sr 0ss8dg +
1

2
E E dsds82gscdss− s8d

3fr 0ssd · r 0ss8dg. s25d

All along we disregard the finite(chain) size effects and
assume that the chain is homogeneous ands,s8 dependence
is actually equivalent tous−s8u dependence. This assumption
furthermore implies that the length of the chain is the largest
length in the problem. Thus, with this line of reasoning,

gscdsQd =E du cosQu gscdsud = gsQd − gsQ = 0d,

lscdsQd =E du cosQu lscdsud. s26d

From here we can also straightforwardly conclude that we
have the following identities for the functional derivatives:

dgscdsQd
dgss,s8d

= 1 − cosQss− s8d,

dlscdsQd
dlss,s8d

= cosQss− s8d. s27d

The next logical step in order to evaluate the partition func-
tion (15) would be to trace out the auxiliary fields
lssd ,gikssd ,Bikssd ,pikssd ,Tikssd. Unfortunately these fields
enter the effective Hamiltonian nonlinearly and they cannot
be simply traced over. Thus we have to introduce a new
approximation at this point: instead of integrating over the

auxiliary fields we will simply evaluate the saddle point ofH̄
with respect to these fields. This is easier and most impor-
tantly it is feasible to do. It is thus at this juncture that a
critical step in the derivation of the partition function has to
be made that constitutes the essence of the 1/D-expansion
method as applied to the polymer problem. The details and
ramifications of this step have been addressed in the previous
work [12].

IV. THE SADDLE POINT EQUATIONS

The saddle point of the effective Hamiltonian(23) with
respect to the fieldslss,s8d, Bss,s8d, gss,s8d, Tss,s8d, and
pss,s8d can be obtained straightforwardly in a standard fash-
ion. For the saddle point in thelss,s8d variable we obtain the
following relation:

1 = f]sr 0ssd · ]sr 0ssdg + DkBTo
Q

G−1sQdQ2. s28d

The next saddle point that we evaluate isBss,s8d. It leads to
the following equation:

gscdsQd =E dss1 − cosQsd
] VsBssd,Tssdd

] Bssd
. s29d

Then follows the saddle point ingss,s8d, giving rise to

Bss,s8d = fr 0ssd − r 0ss8dg2 + 2DkBT

3o
Q

G−1sQdf1 − cosQss− s8dg. s30d

Furthermore the saddle point in the variableTss,s8d leads to

psQd =E ds cosQs
] V„Bssd,Tssd…

] Tssd
, s31d

and finally the saddle point inpss,s8d gives rise to

Tss,s8d = f]sr 0ssd · ]sr 0ssdg + DkBT

3o
Q

G−1sQdQ2 cosQss− s8d. s32d

We now assume that we can retain only terms up to the
fourth order inQ for the functionslscdsQd andgscdsQd. This
is consistent with the fact that the original noninteraction part
of the Hamiltonian contains only Euler-Kirchhoffian elastic-
ity and is thus at most of fourth order in theQ space. In this
way we obtain the following expansion:

lscdsQd = l + psQd = l +E ds
] VsBssd,Tssdd

] Tssd

−
Q2

2
E dss2

] VsBssd,Tssdd
] Tssd

+ ¯ , s33d

as well as

2gscdsQd = Q2E dss2
] VsBssd,Tssdd

] Bssd

−
Q4

12
E dss4

] VsBssd,Tssdd
] Bssd

+ ¯ . s34d

Thus we have basically derived an expansion also for the
self-energy(24) which can now be cast into the form

GsQd = sl + dldQ2 + sKC + dKCdQ4 + ¯

= lsRdQ2 + KC
sRdQ4 + ¯ . s35d

The expansion inQ to the fourth order thus allows us to
introduce the renormalized values of the parametersl and
KC via

lsRd = l + dl, KC
sRd = KC + dKC, s36d

where we introduced the following two abbreviations:

dl =E ds
] V„Bssd,Tssd…

] Tssd
+E ds s2

] V„Bssd,Tssd…
] Bssd

dKC = −
1

2
E ds s2

] V„Bssd,Tssd…
] Tssd

−
1

12
E ds s4

] V„Bssd,Tssd…
] Bssd

. s37d

At this point we are in a position to evaluate all theQ inte-
grals in the saddle point equations. Thus instead of Eqs.(28),
(30), and(32) we remain with
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1 = f]sr 0ssd · ]sr 0ssdg +
DkBT

4ÎlsRdKC
sRd

,

Bss,s8d = fr 0ssd − r 0ss8dg2 +
DkBT

2lsRd

3Sss− s8d +ÎKC
sRd

lsRd se−ÎslsRd/KC
sRddss−s8d − 1dD ,

Tss,s8d = f]sr 0ssd · ]sr 0ssdg +
DkBT

4ÎlsRdKC
sRd

e−ÎslsRd/KC
sRddss−s8d.

s38d

Finally we have to address the question of the reference
state. Assuming with sufficient generality that the reference
configuration of the chain is a straight line, thusr 0ssd=zse,
wheree is a constant vector[12]. At this point we can inves-

tigate also the saddle point ofH̄fr 0ssdg with respect toz, the
new variable, which reduces to the following two equations:

] GsQd
] Q2 = 0 or z = 0. s39d

On general groundsz can be nonzero only at zero tempera-
ture, when there are no fluctuations and the chain can indeed
exhibit straight configurations. For any finite temperature
straight configurations are not feasible without external con-
straints and we should rather havez=0. Taking this into
account and solving the first of the above equations, i.e., we
obtain

1 =
dkBT

4ÎlsRdKC
sRd

. s40d

Let us now introduce a new parameter

j =
4KC

sRd

DkBT
. s41d

In D=4 j would be simply equal the renormalized persis-
tence length. The factor 4/3 obtained forD=3 is a conse-
quence of the 1/D ansatz, i.e., is a consequence of the ap-
proximate nature of the evaluation of the partition function.
We do not attribute much importance to this discrepancy.
With the introduction ofj equations(38) can be reduced to a
rather tame set of formulas

Bssd = 2jfs+ jse−s/j − 1dg,

Tssd = e−s/j. s42d

These two formulas deserve some interpretation. The first of
the above two equations obviously represents the average
size of the chain of contour lengths−s8 since at the saddle
point Bss−s8d=kfr ssd−r ss8dg2l. It is equal to the usual
Kratky-Porod expression for the average end-end distance
squared of a semiflexible chain. The second equation simply
expresses the fact, that for a semiflexible chain the orienta-
tional correlation function, which at the saddle point equals
Tss−s8d=k]sr ssd ·]s8r ss8dl, is exponentially decaying with a

characteristic length equal to the persistence length. This
again is completely consistent with the Kratky-Porod result
for a semiflexible chain[10].

V. RENORMALIZED BENDING RIGIDITY

The above developments now allow us to analyze the ex-
plicit form of the bending rigidity renormalization. Taking
first of all into account the definition ofBss,s8d andTss,s8d
we can write the dipolar interaction potential on the saddle
point diagonalized level in the following form:

V„Bss,s8d,Tss,s8d… = VR„Bss,s8d…T„s,s8d
− VPsBss,s8d…Bss,s8dTss,s8d, s43d

allowing us to evaluatedKC as a function of the parameters
of this interaction potential. We obtain

dKC = −
1

2
E ds s2 FsVR„Bssd… − VP„Bssd…Bssdg

−
1

12
E ds s4 FS ] VR„Bssd…

] Bssd
− VP„Bssd…GTssd

−
] VP„Bssd…

] Bssd
BssdTssdD . s44d

It is instructive to compare this with the analogous formula-
tion of the problem for monopolar interactions[12]. There it
was derived that

dKC = −
1

12
E ds s4

] VR„Bssd…
] Bssd

. s45d

In view of this, it seems that a possible interpretation of Eq.
(44) would be that the orientational part of the interaction
potential averaged over chain conformational fluctuations
leads to effective intersegment interactions with a repulsive
as well as attractive components.

An exact evaluation of the highly nonlinear Eq.(44), note
that dKC is on the left-hand side of this equation as well as
on the right-hand side, hidden inj of the definitions(42), is
not feasible and we have to investigate the properties of its
solution numerically. First of all we break the evaluation of
the integral(44) into two partsdKC=dKC

s1d+dKC
s2d, defined as

dKC
s1d = −

1

2
E

a

`

ds s2 fVR„kÎBssd… − VP„kÎBssd…Bss…g

dKC
s2d = −

1

12
E

a

`

ds s4S ] VR„kÎBssd…
] Bssd

− VP„kÎBssd…

−
] VP„kÎBssd…

] Bssd
BssdDTssd, s46d

where we have taken into account that the interaction poten-
tial can be written as a function of the argumentkur ssd
−r ss8du. Furthermore the lower cutoff was set equal toa, of
the order of the thickness of the chain, whose numerical
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value was taken asa=1 nm. This cutoff stems from the
breakdown of the continuum elasticity at small length scales.
Contrary to the monopolar case[12], this cutoff is essential
and reflects the faster decay of the dipolar interactions with
respect to the separation compared to the monopolar case.
The next step is to write above relations in the form suitable
for numerical evaluation.

Let us first of all introduce the following notation for the
interaction potential:

VRsrd =
p0

2

4pee0

e−kr

r3 s1 + krd = v0k3fRskrd,

VPsrd =
p0

2

4pee0

e−kr

r5 f3 + 3kr + skrd2d = v0k5fPskrd, s47d

where fR,Psud are obviously defined as

fRsud =
e−u

u3 s1 + ud,

fPsud =
e−u

u5 s3 + 3u + u2d. s48d

Introducing furthermore

B̄szd = z− 1 +e−z with z=
s

j
, s49d

and setting

j̄ = 1/sÎ2kjd, s50d

we can derive the following form fordKC
s1d:

dKC
s1d = −

v0

2
skjd3E

a/j

`

dzz2F fRsÎB̄szd/j̄d

− fPsÎB̄szd/j̄d
B̄szd

j̄2
G s51d

and fordKC
s2d

dKC
s2d = −

v0

12
skjd5E

a/j

`

dzz4F fR8SsÎB̄szd/j̄d − fPsÎB̄szd/j̄d

− fP8sÎB̄szd/j̄d
B̄szd

j̄2
DGe−z, s52d

where the derivative infR8 and fP8 stands forf8=]fsÎud /]u
and thus we have

fR8sud = −
e−u

2u5s3 + 3u + u2d,

fP8sud = −
e−u

2u7s15 + 15u + 6u2 + u3d. s53d

We should again note here that the equations for the renor-
malized bending modulus(51) and (52) are essentially non-

linear, since dKC is also hidden in the variablej̄
=dkBT/ f4Î2ksKC+dKCdg.

Let us finally introduce a new variablez defined as

z = j̄ −1 = Î2kj =
s4Î2kKC

sRdd
3kBT

=
4Î2

3

Lp
sRd

lD
, s54d

wherelD=1/k is the Debye screening length.z is nothing
but the inverse reduced screeing length as introduced by
Everaerset al. [3]. Furthermore if

zs0d =
4Î2kKC

dkBT
and dz =

4Î2k dKC

dkBT
s55d

then the definition of the renormalized bending rigidity
KC

sRd=KC+dKC can be cast into the form

z = zs0d −
kv0

DkBT
z3SFs1dszd +

z2

12
Fs2dszdD . s56d

Because of Eq.(6) we can furthermore write in three dimen-
sions

z + Fszd = z +
1

3
sk,BdSp0

e0
D2

z3FFs1dszd +
1

12
z2Fs2dszdG = zs0d.

s57d

This equation gives the functional dependence ofz on the
parameters of the dipolar interaction, most notablylD. From
the definition ofz (54) the solution of the above equation
immediately leads to the renormalized value of the persis-
tence length. The functionsFsidszd have obviously been de-
fined as

Fs1dszd =E
Î2skad/z

`

dz z2ffRszÎB̄szdd − fPszÎB̄szddz2B̄szdg,

Fs2dszd =E
Î2skad/z

`

dz z4ffR8szÎB̄szdd − fPszÎB̄szdd

− fP8szÎB̄szddz2B̄szdg e−z. s58d

Figure 1 shows the dependence ofz+Fszd on z for four
different values ofskad that enters the definition ofFszd via
the lower bound of the integrals(58). The solution of Eq.
(57) is obtained from Fig. 1 by simply looking at the inter-
section between the curves on the figure with a line parallel
to thez axis atzs0d.

A more transparent form of these equations that will be
solved numerically can be obtained if we go back to the
original variables and can thus write for the renormalized
persistence length

Lp
sRd = Lp

s0d −
lB

4Î2
Sp0

e0
D2S4Î2

3

Lp
sRd

lD
D3FFs1dS4Î2

3

Lp
sRd

lD
D

+
1

12
S4Î2

3

Lp
sRd

lD
D2

Fs2dS4Î2

3

Lp
sRd

lD
DG . s59d

This equation is the main result of our paper. Its solution
gives the renormalized value of the bending rigidity or
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equivalently the persistence length as a function of the dipo-
lar interaction parameters. In general, it can only be solved
numerically but simplified analytic solutions can be obtained
in limited regions of the paramater phase space.

It is instructive to compare these results with those de-
rived for a polyelectrolyte chain with simple screened
Debye-Hückel monopolar electrostatic interactions along the
chain, where the fixed charges are at separationA along the
chain. If we formulate the results derived in in the same
language as used above, we get

z = zs0d +
Î2klB

12 23sAkd2z2Fszd, s60d

where in this case

Fszd =E
0

`

dzz4s1 + zÎB̄szdd
e−zÎB̄szd

B̄szd3/2
. s61d

The analysis of these equations(though written in a some-
what different, yet completely equivalent form) has already
been performed before and we direct the reader to that work
[12].

VI. RESULTS

We noted already that the basic equations derived for the
renormalization of the persistence length of a semiflexible
dipolar chain have no simple analytic solution. Figures 2 and
3 thus present numerical solutions of Eq.(59) for some val-
ues of parametersLp

s0d, lD, while we always consider the case
slB/2dsp0/e0d2=1 nm−1. This last parameter sets the overall
scale of the renormalization and is not crucially significant so

FIG. 1. Thez+Fszd Eq. (57) for four different
values ofka, viz. ka=100, 10, 1, and 0.1(from
left to right). The dimensionless strength of the
dipolar interactionsklBdsp0/e0d2 was taken as 1.
At large values ofz the dependence is obviously
linear.

FIG. 2. Renormalized persistence length Eq.
(59) for three different values ofLp

s0d=20, 10, and
1 nm (upper, middle, lower curves), circles. Also
shown are the approximate solutions obtained
from the expansion(63). The strength of the di-
polar interactionlBsp0/e0d2 was taken as 1 nm.
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we do not study its variation in detail. Two universal behav-
iors seem to emerge. For small values of the screenenig
lengthlD the behavior is given in Fig. 2. For large values of
the screening length an altogether different type of behavior
is seen Fig. 3. Numerical solutions of Eq.(59) do not show
any indications of a possible phase transition to an ordered
phase at nonzero temperatures though due to the attractive
component of the dipolar interactions one might expect them
to. This is completely consistent with the behavior of the
flexible chain[8].

Let us investigate if we can understand the two types of
behavior depicted on Figs. 2 and 3 with simple analytical
arguments. What we basically need to figure out is what
would be the typical contributions to the integrals(58) that
enter the equation for the renormalized bending rigidity Eq.
(59). It is instructive to consider first the case of small
screening lengths. Here the main contribution to the integrals
Eq. (58) along the polyelectrolyte comes from short length
scales. In this limit one derives thatBssd.s2 and locally the
chain thus behaves in the Kratky-Porod style[10]. This leads
to the following approximate form ofFszd:

Fszd = z3SFs1dszd +
z2

12
Fs2dszdD

= 2Î2E
Î2skad/z

Î2/z dz

z F− 18 − 18
zz
Î2

− 9S zz
Î2

D2

+ S zz
Î2

D3G .

s62d

Equation(59) in this very same limit then assumes the form

Lp
sRd = Lp

s0d −
lB
2
Spo

e0
D2S f− 25 − 7skad + skad2ge−skad

12

−
3

2
E1skadD , s63d

whereE1sud is the standard exponential integral with a lim-
iting form of limu→0E1sud=−g−ln u+Osud. Except for very

small values of the screening length where obviouslyLp
sRd

<Lp
s0d, a valid approximation of Eq.(63) capturing its domi-

nant features would be

Lp
sRd < Lp

s0d +
3lB
4
Spo

e0
D2

ln
lD

a
. s64d

This result could be seen as the dipolar chain equivalent of
the Odijk-Skolnick-Fixman[2] result for the monopolar
chain. In that case the behavior of the persistence length at
small values of the screening length isLp

sRd,lD
2 . The differ-

ence between this result and Eq.(64) is purely due to the
swifter decay of the dipolar interaction potential vs separa-
tion r in monopolar caser−1 and in dipolar caser−3. This can
be seen crudely as follows: since the interaction potential for
the dipolar chain falls off twice as fast as the monopolar
potential the OSF reasoning should give for the electrostatic
persistence lengthlD

2 lD
−2=lD

0 . The zero in the exponent
translates as usual into the log term, which is exactly Eq.
(64). The way the approximate result Eq.(63) fares when
compared with the full numerical solution of Eq.(59) is
shown in Fig. 2. Obviously the approximaton is not bad for
small enough screening length but becomes progressively
worse for larger bare persistence lengths and larger screen-
ing. The same reasoning applied to the general multipole of
ordern would lead to the electrostatic persistence length with
scalinglD

−sn−2d. One can thus hardly expect any electrostatic
renormalization effects above dipolar.

Next we consider the case of large(r) screening lengths.
Here the main contribution to the integrals(58) along the
polyelectrolyte comes from large(r) length scales. In this
case the local properties of the chain are characterized by an
essentially free flight behavior[10] of the chain, leading to
Bssd.2js. Here we can derive

FIG. 3. Fit (bold line) of the renormalized
persistence length to a power ofla for three dif-
ferent values ofLp

s0d=1, 10, and 20 nm(lower,
middle, and upper circles). The scaling exponent
obtained from the fit isa=0.75. The strength of
the dipolar interactionlBsp0/e0d2 was taken as
1 nm.
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Fszd = z3SFs1dszd +
z2

12
Fs2dszdD

= −E
Î2skad/z

1/z2

dzz1/2s2 + 2zÎz+ z2zd

= −
41

15
z −3, s65d

which leads to the following approximate form of Eq.(59):

Lp
sRd < Lp

s0d +
lB

4Î2
Sp0

e0
D241

15
S4Î2

3

Lp
sRd

lD
D−3

= Lp
s0d + 0.07 lBSp0

e0
D2S lD

Lp
sRdD3

. s66d

This equation can have two possible solutions depending on
the magnitude ofLp

s0d. First of all if Lp
sRd@Lp

s0d, meaning that
the value of the persistence length is determined mostly by
the electrostatic interactions along the chain, we have

Lp
sRd = 0.071/4FlBSp0

e0
D2G1/4

lD
3/4. s67d

This approximate result is nicely exhibited also in Fig. 3
where it is seen how the exact numerical solutions of Eq.
(59) approach the above scaling limit for sufficiently large
values of the screening length with the scaling exponent ex-
actly equal to the above prediction. The form(67) is thus a
limiting law for the electrostatic part of the persistence
length valid universally for large screening lengths and small
Lp

s0d. The situation corresponding to Eq.(67) is encountered
in chains of polarized particles of an electrorheological fluid.
These particles indeed interact via dipolar forces and by defi-
nition in that caseLp

s0d is not only small but vanishes identi-
cally. One should be, however, aware, especially in taking
the no-screening limit, that in the above calculation by as-
sumption the length of the chain is always the largest length
in the system.

In the other case with a predominant contribution of the
bare persistence length, i.e.,Lp

sRd,Lp
s0d, thus in the limit

where the strength of the dipolar interaction is very small, we
end up with the following limiting form:

Lp
sRd = Lp

s0d + 0.07 lBSp0

e0
D2S lD

Lp
s0dD3

. s68d

This limiting form of the persistence length is only valid in
the sense of a perturbation expansion when electrostatic ef-
fects are vanishing, thus having a very small range of valid-
ity, and contrary to the scaling laws(64) and(67), cannot be
viewed in itself as a real scaling law. Due to its small range
of validity it cannot be discerned in the numerical solutions,
Figs. 2 and 3.

These last two results could again be compared with the
expressions valid for the monopolar chain in the same re-
gions of the parameter space and derived within the same
theoretical framework[12]. In that case the behavior of the
persistence length at large values of the screening length
would beLp

sRd,lD
b , whereb is either 7/6 or 7, depending on

whetherLp
sRd /Lp

s0d is either large or small. Again the differ-
ence between these results and Eqs.(67) and (68) is purely
due to the swifter decay of the dipolar interaction potential
vs separation; monopolar caser−1 and dipolar caser−3. This
difference introduces an additional factor oflD

−2 slD /Lp
sRdd−2

into the second term of Eq.(66), wherefrom the exponents
b=3/4 or 3 can bederived straightforwardly. It is thus clear
that the behavior of the electrostatic part of the persistence
length of a monopolar and dipolar chain are intimately re-
lated in both relevant limits of weak and strong screening.
Applying again the same reasoning to the general multipole
of ordern would lead to the electrostatic persistence length
with scalingb=s7−2nd or b=s7−2nd / s6−nd. Again electro-
static renormalization effects above dipolar are very small.

The remaining question in this context would be how ro-
bust are the two regimes derived above that lead to the ap-
proximate forms(64) and (67)? In assessing the range of
validity of these different approximations we can invoke a
related situation already encountered in the case of a mo-
nopolar chain[12]. In that system extensive simulations
[3–5] left no doubt that the OSF regime, corresponding in the
context of the dipolar chain to Eq.(64), is very robust and
extends over a broad region of the parameter phase space.
The sub-OSF laws for the electrostatic renormalization of the
persistence length givingb in the vicinity of 1 were effec-
tively ruled out. Translating this into the context of the dipo-
lar chain would make the range of validity fo Eq.(66) fairly
narrow. But these are all conjectures since we are aware of
no detailed simulations for semiflexible dipolar chains, set-
ting aside the extensive work by Muthukumar on theflexible
chain [8], that would match the superb work performed re-
cently in the context of the monopolar chain[3–5].

VII. CONCLUSIONS

We presented an analysis of the electrostatic contribution
to the persistence length of a semiflexible screened-dipolar
chain. The formal context of our analysis is provided by the
1/D-expansion method that has been already successfully
applied to different problems of polymer physics[12,18,19].
1 /D expansion is closely related to different variational
schemes that have been amply applied to the problem of
electrostatic rigidity of charged polymers[20–24]. What
singles out our approach is the fact that we work consistently
with a semiflexible Hamiltonian and enforce the inextensibil-
ity constraint on a global level. This leads to some discrep-
ancies between variational formulations and 1/D-expansion
method. However, the robustness of the OSF regime tran-
spires quite clearly from the 1/D expansion in the context of
a monopolar polyelectrolyte, giving us some confidence that
an analogous result for a dipolar chain would have the same
range of validity.

The main step in our formalism was to find an appropriate
way to treat the orientational dependence of the intersegment
interaction potential. This has been accomplished by intro-
ducing additional auxiliary fields that in their turn lead to
new saddle-point equations. Though the derivation of the
renormalized elasticity is as a consequence, more compli-
cated, it leads to manageable and transparent results. The
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main conclusion based on these results would be that the
dependence of the electrostatic persistence length on the
screening length for a dipolar chain is much less pronounced
then for a monopolar chain. This is clearly seen in the case of
large as well as small screening. Also it appears that a semi-
flexible chain does not give rise to any localized structures as
those described by Muthukumar[8] in the context of a flex-
ible chain. This is indeed not surprising since the chain elas-
ticity is obviously strong enough to prevent extensive loop-
ing of the chain that would lead to local aggregation of the
chain based on the attractive component of the dipolar inter-
action. This attractive component is also not strong enough
to lead to any type of phase transition to an ordered state at
nonzero temperatures. This conclusion is just as valid for a
semiflexible as it is for a flexible chain.

Eventually the conclusions arrived at in this work would
have to be tested against extensive simulations just as they

were in the case of a monopolar charged chain. As for the
experimental situation where repeated claims of a sub-OSF
regime have been voiced[25,26], one wonders if they could
in fact be a consequence of a specific association of the mo-
bile counterions with fixed charges on the polyelectrolyte
backbone producing a system not far from the model dipolar
chain analyzed in this work. In order to test this hypothesis
one would have to estimate independently the effective di-
pole moments of the chain segments. The results presented in
this work could then serve as a guideline to differentiate
between monopolar and dipolar OSF-like behavior.

ACKNOWLEDGMENTS

I would like to thank Per Lyngs Hansen for numerous
discussions regarding polyelectrolytes and their theoretical
description.

[1] H. Yamakawa,Helical Wormlike Chains in Polymer Solutions
(Springer Verlag, New York, 1997).

[2] T. J. Odijk, J. Polym. Sci.15, 477 (1977); J. Skolnick and M.
Fixman, Macromolecules10, 944 (1977).

[3] R. Everaers, A. Milchev, and V. Yamakov, Eur. Phys. J. E8, 3
(2002).

[4] M. Ullner, J. Phys. Chem. B107, 8097(2003).
[5] T. T. Nguyen and B. I. Shklovskii, Phys. Rev. E66, 021801

(2002).
[6] A. Popov and D. A. Hoagland(private communication).
[7] A. Eisenberg and J.-S. Kim,Introduction to Ionomers, 1st ed.

(Wiley, New York, 1998).
[8] M. Muthukumar, J. Chem. Phys.104, 691 (1996).
[9] T. P. Lodge and M. Muthukumar, J. Phys. Chem.100, 13 275

(1996).
[10] M. Rubinshtein and R. H. Colby,Polymer Physics(Oxford

University Press, Oxford, 2003).
[11] A. M. Polyakov,Gauge Fields and Strings, Vol. 3 of Contem-

porary Concepts in Physics(Taylor and Francis, New York,
1987).

[12] P. L. Hansen and R. J. Podgornik, J. Chem. Phys.114, 8637

(2001).
[13] J.-L. Barrat and J.-F. Joanny, Adv. Chem. Phys.94, 1 (1996).
[14] J. S. Schwinger, L. L. Deraad, K. A. Milton, and W. Y. Tsai,

Classical Electrodynamics(Perseus, London, 1998).
[15] E. Pitard, T. Garel, and H. Orland, J. Phys. I7, 1201(1997).
[16] R. D. Kamien, Rev. Mod. Phys.74, 953 (2002).
[17] A. M. Gupta and S. F. Edwards, J. Chem. Phys.98, 1588

(1993).
[18] R. Podgornik, P. L. Hansen, and V. A. Parsegian, J. Chem.

Phys. 113, 9343(2000).
[19] P. L. Hansen, D. Svensek, V. A. Parsegian, and R. Podgornik,

Phys. Rev. E60, 1956(1999).
[20] R. Podgornik, J. Chem. Phys.99, 7221(1993).
[21] D. Bratko and K. A. Dawson, J. Chem. Phys.99, 5352(1993).
[22] H. Li and T. A. Witten, Macromolecules28, 5921(1995).
[23] R. R. Netz and H. Orland, Eur. Phys. J. B8, 81 (1999).
[24] B. Y. Ha and D. Thirumalai, Macromolecules36, 9658(2003).
[25] W. F. Reed, S. Ghosh, G. Medjahdi, and J. Francois, Macro-

molecules24, 6189(1991).
[26] M. Beer, M. Schmidt, and M. Muthukumar, Macromolecules

30, 8375(1997).

ELECTROSTATIC CONTRIBUTION TO THE… PHYSICAL REVIEW E 70, 031801(2004)

031801-11


