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Electrostatic contribution to the persistence length of a semiflexible dipolar chain
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We investigate the electrostatic contribution to the persistence length of a semiflexible polymer chain whose
segments interact via a screened Debye-HUckel dipolar interaction potential. We derive the expressions for the
renormalized persistence length on the level of ®-kkpansion method already successfully used in other
contexts of polyelectrolye physics. We investigate different limiting forms of the renormalized persistence
length of the dipolar chain and show that, in, general, it depends less strongly on the screening length than in
the context of a monopolar chain. We show that for a dipolar chain the electrostatic persistence length in the
same regime of the parameter phase space as the original Odijk-Skolnick-Ri@&Bnform for a monopolar
chain depends logarithmically on the screening length rather than quadratically. This can be understood solely
on the basis of a swifter decay of the dipolar interactions with separation compared to the monopolar electro-
static interactions. We comment also on the general contribution of higher multipoles to the electrostatic
renormalization of the bending rigidity.
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I. INTRODUCTION ments also suggest that reevaluation of the basic assumptions
Semiflexible polyelectrolytes are ubiquitous in biological in our understanding of counterion-backbone interactions in

context ranging from biopolymers such as DNA, filamentousPolyelectrolytes would be highly desiraljié].
F actin, microtubules, and then all the way to molecular In specific ion adsorption mobile charges from the bathing
aggregates such as micelles or even whole organisms as $@lution and fixed charges along the polyelectrolyte can com-
bacterialfd viruses or the tobacco mosaic virus. In all thesebine, leading to the emergence of higher multipoles along the
cases we are dealing with objects that at an appropriate scgb®lyelectrolyte chain, the first one being a dipole stemming
behave as Euler-Kirchhoffian elastic filaments. The most imfrom the association of a negative fixed charge and a specifi-
portant mechanical characteristics in these molecular systentsilly adsorbed mobile positive charge from the bathing solu-
is the persistence length stemming from the bending rigiditytion. The same situation though for different reasons, specifi-
of the polymer that can exhibit enormous variation in mag-cally due to the low dielectric constant environment, could
nitude bracketted by nm on the lower end and mm on thde obtained also in the context of ionomgrs Similar con-
upper end. sideration could apply also to magneto- and electrorheologi-
The bending rigidity and thus the persistence length is aal fluids in external fields.
consequence of short range atomic and molecular interac- Muthukumar[8] was the first to realize the importance
tions and is itself a mesoscopic propefty]. For charged and the extent of modifications wrought by the first higher
semiflexible polymers the long range nature of the electromultipole, i.e., the dipole, on the behavior of a flexible poly-
static interactions modifies the value of the persistencelectrolyte described on the level of the Edwards Hamil-
length as is well known from the seminal work of Odijk, tonian. He discovered the formation of localized aggregated
Skolnick, and FixmarfOSH [2]. Recent detailed critical as- structures along the chain that dominate the statistical behav-
sessment of the OSF conjectyBe-5] confirmed the univer- ior of the flexible polyelectrolyte chain. They are character-
sality of the dependence of the persistence length on thized by a different scaling of the size of the chain with re-
parameters of the electrostatic interaction. It appears that thepect to its length and depend continuously on the
OSF behavior characterized by the inverse dependence of tiparameters of the dipolar interaction potential.
persistence length on the ionic strength of the bathing me- Chain flexibility as formalized by the Edwards Hamil-
dium is quite robust. One of the main ingredients of the OSRonian [9] is essential for emergence of this type of aggre-
ideology is a complete lack of any atomic or moleculargated structures. Now assume a dipadamiflexiblechain,
specificity in the interaction between charge segments alondescribed as an Euler-Kirchhoffian filament with dipolar in-
the polyelectrolyte. By assumption the mobile charges in sotersegment interactions. On top of that assume that the length
lution and the fixed charges on the polyelectrolyte backbonef the chain is the largest length in the problem. This consti-
interact only via generigscreenefl Coulomb interaction. tutes a complementary limit to be contrasted with the Muthu-
Though this assumption seems to be reasonable it would Haimar calculation. The analysis provided by Muthukumar
appropriate to investigate what kind of behavior of persis-and the one detailed below should thus brackett the behavior
tence length is conferred by the effects of strong specificityof any real polyelectrolyte chain with dipolar charges along
as in, e.g., the case of specific ion adsorption. Recent experits length.
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The problem with dipolar interactions is that they dependentational part of the Hamiltonian, a global inextensibility
on the local orientation of the polyelectrolyte segments. Thiconstraint is substituted for the local one and a saddle point
complicates the evaluation of the partition function of theevaluation is introduced for all the auxiliary fields that do not
semiflexible chain in an essentail manner. In order to makenter the Hamiltonian on a quadratic level. In Sec. Il the
this complicated problem tractable, we will invoke the saddle point equations are solved explicitly by expanding all
1/D-expansion methodl11] that has already been success-the Fourier components of different auxiliary fields to the
fully applied to the problem of persistence length renormal-fourth order. This is consistent with the semiflexible ansatz
ization of a semiflexible polyelectrolyte chajib2] with mo-  for the configurational part of the Hamiltonian of the chain.
nopolar charges. This will allow us to explicitly evaluate the Section IV introduces explicit equations for the bending ri-
electrostatic contribution to the persistence length of a dipogidity renormalization that follow from the saddle point
lar chain. As a point of departure we will assume that theequations of the previous section. These equations are solved
dipolar charges along the chain interact via a screened Couumerically in the last section. Different limiting forms of
lombic interaction potential, the range of which is characterthe numeric solutions for limited regions of the parameter
ized by the Debye screening lendtt3]. We will derive the  phase space are derived also analytically. We take a critical
complete dependence of the electrostatic persistence lengliok at the results derived in this work and comment on the
on the parameters of the dipolar interaction potential andmplied limitations of their validity and their connection with
show that it leads to a different behavior regarding its depenprevious work on the electrostatic renormalization of the ri-
dence on the ionic strength of the bathing solution then theidity of semiflexible polymers.
standard OSF result. We find basically two different regimes
for the bahavior of the electrostatic persistence length of a Il. THE EEFECTIVE HAMILTONIAN
dipolar chain.

« For small but nonvanishing values of the screening We investigate a semiflexible polymer chain with dipolar
length \p the electrostatic contribution to the persistencecharges along the chain. The dipoles can be either structural
length behaves as or they can be a consequence of the specific adsorption of,
e.g., positive mobile charges from the bathing solution onto
the fixed negative charges on the polyelectrolyte backbone.

whereL? is the bare value of the persistence length. This' "€ total interaction energy of the chain is given by
expression would superseed the O%Eresult valid for mo- 1(t (-
nopolar interactions. Obviously the dipolar electrostatic —j f V(r(s),r(s"))dsds, (1)
renormalization of the persistence length depends more gen- 2Jo Jo
tly on the screening length.

 For large values of the screening length the electro-
static contribution to the persistence length behaves as g Hr(e-r(s")

V(r(s),r(s')) =

LR =L + constx In \p,

where

=(Ir(s) = r(sHPL+Kr(s)

LR = constx A5, Amreey|r () — 1 ()|

wherep equals either 3/4 or 3, depending on the strength of =r(s)[Ip(s) - p(s’) = {3 + 3«]r(s) = r(s)]
the dipolar interaction. This result should be compared with (e [12 ) (o
various variational estimates of a sub-OSF behavior for a +IKlr(9) = r(S)IHp(9) [r(9) - r(s)]}
monopolar chain that lead 8 in the vicinity of 1. X{p(s) - [r(s)—r(s")]}) (2

These two regimes stem from two different limiting forms with |r(s)-r(s")| the separation between two segments lo
of a single equation giving the renormalized value of the L )
9 q giving ted atr(s) andr(s’) along the chains is the arclength of

ersistence length as a function of the parameters describi
b g b e chain, ando(s) and p(s’) are dipoles per unit length

the dipolar interactions along the chain. We also presen ) )
complete numerical solutions of this equation in various relocated ais ands’. The above form of the screened dipolar

gions of the parameter space. interaction follows straightforwardly from the second order

The outline of the paper is as follows. In Sec. | we first Multipole expansion of the screened Coulomb kerfriel]
rewrite the Hamiltonian of a semiflexible polymer chain with @"d reduces to the usual form of the dipolar |nteractlor_11|n the
screened dipolar interactions, assumed to be composed of tH&Mt of no screening. On the Debye-Hickel leveE\y",
Euler-Kirchhoff elastic energy and the interaction energy, inVheré \p is the Debye screening length. We furthermore
a form that allows for a straightforward application of the @5Sume that the dipole per unit length along the chain is
1/D-expansion ansatz. We assume that the dipoles of th@/ven by
polymer segments are orlentgd along .the .Iocal tangent vec- P(S) = Podd (9), (3)
tors of the chain. This effective Hamiltonian captures the
elasticity of the chain, the inextensibility of the chain and thewhere p, is the strength of the dipolar moment per unit
fact that electrostatic interactions depend on the position ofength of the segment anély (s)=r(s) is the unit tangent
the interacting segments as well as their orientation. Sectiowector. It is thus assumed that the dipoles point along the
Il introduces all the important approximations in order to chain, and that the component of the dipoles perpendicular to
make the evaluation of the partition function of the chainthe local axis of the chain is averaged out to zero. Or model
tractable. A diagonalization ansatz is introduced for the orids thus “perpendicular” to the case investigated in the context
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of protein folding[15]. The interactions along the chain are segments along the chain and also depends on their orienta-
therefore described with a generic form of segment-segmeriion. We will address both problems systematically by apply-
interactions that can be cast into the form ing the method of Lagrange multiplief§2].
, , , To this effect we will introduce two additional terms into
V(r (s).r(s') = VR(r(s) = r(s) dsf (5)ds T (') the interaction Hamiltonian. The inextensibility constraint is
= Vp(r(s) = r(s){ag(s) -[r(s) = r(sH]} dealt with via the Lagrange multipliex(s), leading to an
additional term in the Hamiltonian of the form

X{dgr(s') -[r(s)=r(s)]}, 4) )
with oMy =3 J ds\(9){[sr (917 - 1} (10
~«r(9)-r(s")] . . . .
VR(F(9) = 1(s)) =vg—————[1+ Kr(s) -r(sHl, together Wlt.h. an addlt_lonal trace ove(s) in the expression
r(s)—r(s)| for the partition function. In what follows we will assume
that the inextensiblity constraint can be implemented glo-
g KIr(e-r(s")| bally instead of locally{17]. This automatically means that
Vp(r(s) =r(s") :UOW[B +3k|r(s) —r(s")| A(s)=\. The nonlocality of the interaction potential is more
re-rns difficult to deal with then in the case of a chain without
+k2r(s) - r(s)?]. (5) orientationally dependent interactions. In order to pave the

. . . . way for an approximate evaluation of the partition function
Obviously the interactiod) depends on the positions of the.we introduce two new Lagrange multipliers in the form of

interacting segments as well as on their orientation. This I$wo tensorial auxiliary fields. First of all we define
the fundamental difference between monopolar and dipolar '

interactions. We have defined Bi(s,8") =[ri(s) = ri(s)r(s) —r(s)] (11
2 2 and then
vo= 0 =i T IB<'°—S>, (6)
4meey € Ti(3,8") = 34 {(S)der (9). (12

wherelg is the Bjerrum length[13]. The units ofvy are  \we notice immediately these two fundamental identities
energy times length and are thus the same as the units of

bending modulus of a semiflexible polymer chain. Tr By(s,s') = (r(s) -r(s'))* and
The generic form of the interactiai@) together with the
Euler-Kirchhoffian elastic conformational part of the mesos- Tr Ty (s,8") =041 (S) - 941 (). (13

copic free energy16] can now be used to investigate the N ) )
statistical behavior of a semiflexible dipolar chain. The me-/V& thus conclude that T (s,s’) is equivalent to5(s,s’)

soscopic Hamiltonian of the chain can be written canonicallyntroduced in the context of orientationaly independent intra-
as chain interactiong12]. Introducing furthermore the follow-

ing two additional coupling terms:

1 L
H[r(9]=ZKe| dddr(s)]? 1
1=k agir 1= | | dstsau(s 8 -l - s
L rL
+}f f dsdsV(r(s),r(s"). (7) - By(s,s"),
2 0J0
where the local curvature is SHa= %f f dsdspy(s,s) (A (9 ((S) — Ti(s,')),
#r(s)
2 —
IS =7 ) (14

. - . . . ite th ition function in the f
The bending rigidityK¢ is connected with the bare persis- we can write the partition function in the form

tence length viaKc=kgT L(F?). Since in what follows the
chain is assumed to be inextensible an additional constraint

of a4 (s)dyr (s)=1 should be taken into account. The partition _
function thus assumes the form XD pi(8) D[ Zi(s)Jexp - BH[r ()], (15

= - f DIr (9]DINSIDLgi(S)IDLBK(S)]

where the effective Hamiltonia®[r(s)] is given by

== [ IS e P-D ep-prrel @
H[r(9)]=HLr(s)] + SHalr (9] + SHAlr ()] + SH[r(s)].

There are two difficult problems connected with this parti- (16)
tion function: first of all we have the constraint of inextensi-
bility that has to be enforced locally for every conformation The new auxiliary fieldg(s,s’) and py(s,s’) thus act as
of the chain, and on top of this there is the nonlocality of thetensorial Lagrange multipliers setting the constraimt$s)
segment-segment interaction potential that couples differentr;(s')][r.(s)—r(s')]-Bi(s,s')=0 and  ¢;(9)der (S
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-Ti(s,8')=0. In the new variable space the segment- 0i(s,8') =g(s,8") S,
segment interaction potential can be obtained in a more
transparent form as , ,
P Pi(s.S) = p(s,5) B (20

V(r(s),r(s")) = Vg(Tr Bi(s,s')Tr Ty(s,s . . .
(r(9),r(s)) = Vel K(S:S) K(s:S) Though this ansatz is not absolutely necessary in order to

= Vp(Tr By (s,s")Bi(s,8")Ti(s,s') make progress in the evaluation of the partition function Eq.
_ , , (15), it certainly makes the whole calculation manageable
= V(Bi(s.s). Ti(s.5).- (17) and controllable, reducing its overall complexity to a bare
In order to arrive at a more transparent form of the partitionminimum. The above ansatz also clearly implies
function we furthermore introduce the following two new

variables: 09(s,8) =g9(s,5") 8,

(© 1 — o ' '
)\Ik (S,S ) )\ (5”(5(3 S ) + plk(S!S )1 )\I(IS)(S’S/) = )\(C)(S’Sl)élk (21)
1 In order to be consistent we must also introduce the same
(c) N — = o mA. i ) o'\ — A ’
G (5.8') = 25(5 s)fds[g,k(s,s’)+g|k(s’,s )]~ Gi(s,s). type of diagonalization ansatz for the field(s,s’) and
(18) 7Tiw(s,s’), which are conjugate to the fieldg(s,s’) and

pi(s,s’). We formulate this as
With these new definitions the effective Hamiltonian can be
finally reduced to this fairly complicated form ~o 1 ,
Y y comp Bi(s,') = = B(s,8) 8,

77[f(s)]=%l<c J dswir(s))z—%x f ds+ % f f dsd$\

. Ti(s8) = +T(5:8)d. 22)
X(s,5")gri(S)dqr (s) + > f f dsds2g}y p
1 In this way we can write TB(s,s')=B(s,s’) and
X(s,8)r(s)r(s) - —f f dsdsgi(s,s")Bi(s,s’) Tr Ty (s,s')=7(s,s’). Since we are not concerned here with
2 explicit analysis of finite size effects we can assume overall
1 that the(s,s’) dependencies actually reduce(ss-s’). Simi-
_Ef f dsdspi(s,s')7i(s,s") larly to the case of orientationally independent intrachain
interactions we see that the partition function is now qua-
1 ) ) dratic inr(s) and its first and second derivatives. We can thus
+ Ef f dsdsV(Bi(s,s'), Tik(s,s')). (19 trace over these harmonic degrees of freedd@). Expand-
ing the whole effective Hamiltonian around a reference con-
The above form of the Hamiltonian together with E45)  figurationry(s) and introducing the Fourier components of
represents at this stage an exact expression for the partitiQiifferent fields in the standard way we obtain after tracing
function. This is the starting point of different approxima- out the harmonic degrees of freedom the following form of
tions introduced below. the effective Hamiltonian:
Though the above form of the effective Hamiltonian looks
prohibitively complicated it can in fact be reduced to analyti- — — DkgT 1
cal quadratures provided one devises a powerful enough ap- H=H[ro(s)]+ 5 2 g(Q - N f ds
proximation scheme. It was shown in recent wftRk,18,19 Q
that the 1D-expansion method, whei2 here and below is 1
the dimensionality of the embedding space, can be fruitfully - EJ J dsdsg(s,s')B(s,s')
applied to polymer problems of the above type and we will
use our experience gained in the context of monopolar inter- 1 , ,
actions[12] to also tackle the more complicated case of mul- - Ef J dsdsp(s,s’)7(s;s")
tipolar interactions as implied by the Hamiltoniglo).

+ 1 f f dsds$V(B(s,s'),7(s,s)), (23
IIl. THE ANSATZ 2

Our rationale for writing the effective Hamiltonian in the where the self-energy functiaf(Q) is given by
form (19) is that it will be shown to be amenable to straight-
forward approximations leading to a closed form evaluation G(Q) = [KcQ* + N (Q)Q% + 299(Q)]. (24)
of the partition function. Similar methods have been already
used successfully in the context of monopolar interactionsHere A©(Q) and g(Q) are of course the Fourier compo-
First of all we will introduce a diagonalization ansatz of the nents of the fieldsg®(s-s’) and A\®(s-s’). The Hamil-
form tonian of the reference configuratiog(s) can be derived as
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Hro(s)] = %ch da2r o(9) 7 + %f f dsdd\©(s-¢)

X[ g o(S) -8sro(S’)]+% f f dsds2g(s-¢')

X[rols) - ro(s)]. (25)

All along we disregard the finit¢chain size effects and
assume that the chain is homogeneous s8 dependence
is actually equivalent t¢s—s’'| dependence. This assumption

furthermore implies that the length of the chain is the largest

length in the problem. Thus, with this line of reasoning,

99(Q) = f du cosQu d%(u) =g(Q) - g(Q=0),

A9Q) = f du cosQu A9(u). (26)

From here we can also straightforwardly conclude that w
have the following identities for the functional derivatives:

PHYSICAL REVIEW E 70, 031801(2004

B(s,s') =[ro(s) = rq(s)]?+ 2DkgT

x> G HQI[1-cosQ(s-s)]. (30
Q

Furthermore the saddle point in the varialfis,s’) leads to

S V(B(s),7(s))

D(Q)=fd5 cosQ 3709 , (31
and finally the saddle point ip(s,s’) gives rise to
T(s,s") = [0l oS) - 3 o(S)] + DkgT
Q% cosQ(s-9). (32

x> GYQ)
Q

We now assume that we can retain only terms up to the
fourth order inQ for the functions\©(Q) andg'®(Q). This
is consistent with the fact that the original noninteraction part
of the Hamiltonian contains only Euler-Kirchhoffian elastic-
ity and is thus at most of fourth order in ti@@space. In this

ay we obtain the following expansion:

IV(B(s),7(s))

89°°(Q) A9Q)=A+p(Q) =r+ f ds
= <=1 - — g
5955 cosQ(s-s'), d7(9)
aV(B(s),1(s
0 J 4 VEOTS)
NS =cosQ(s-9'). (27) 9 7s)
as well as
The next logical step in order to evaluate the partition func-
tion (15 would be to trace out the auxiliary fields 2¢9(Q) = sz dss?&V(B(S),T(S))
N(S),9ik(9), Bik(9), pi(9), Ti(s). Unfortunately these fields aB(s)
enter the effective Hamiltonian nonlinearly and they cannot IV(B(9),T( ))
be simply traced over. Thus we have to introduce a new f dsd———— "7 AR (34)
approximation at this point: instead of integrating over the dB(s)

auxiliary fields we will simply evaluate the saddle poin’éf  Thys we have basically derived an expansion also for the

with respect to these fields. This is easier and most imporse|f-energy(24) which can now be cast into the form
tantly it is feasible to do. It is thus at this juncture that a ) .
G(Q) =N+ oN)Q°+ (Kc+ oK)Q™ +

critical step in the derivation of the partition function has to
be made that cpnstltutes the essence of tHB—&)lpans[on =\RQ2+ K(CR)Q4 + (35)
method as applied to the polymer problem. The details and
ramifications of this step have been addressed in the previodghe expansion imQ to the fourth order thus allows us to
work [12]. introduce the renormalized values of the paramekeend
Kc via
IV. THE SADDLE POINT EQUATIONS ¢
36

The saddle point of the effective Hamiltoniga3) with (36

respect to the fielda(s,s’), B(s,s'), g(s,s'), 7(s,s'), and  where we introduced the following two abbreviations:

p(s,s’) can be obtained straightforwardly in a standard fash- e f &V(B(s) 7(9) f g&V(B(S) T(s)

R=N+68\, KPF=K:+ K,

ion. For the saddle point in the(s,s’) variable we obtain the

following relation: 9Ty dB(s)
1=[ago(S) - 0 o(S)] + Dk T, G HQ)IQ?. (28) IV(B(9),7(9))
° f SSTone
The next saddle point that we evaluate3is,s'). It leads to
the following equation: _t é;‘j’V(B(s) 7(9)) 37)
12 9B(s)

IV(B(s),7(s))
dB(s)

Then follows the saddle point ig(s,s’), giving rise to

99(Q) = f ds(1 - cosQ9 (29

At this point we are in a position to evaluate all tQeinte-
grals in the saddle point equations. Thus instead of &5,

(30), and(32) we remain with
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KgT characteristic length equal to the persistence length. This
1=[d o(S) - dgf o(S)] + —K(R)’ again is completely consistent with the Kratky-Porod result
for a semiflexible chairil0].
DkgT
N — _ 12 B
B(s,s') =[ro(s) =ro(s) "+ 2R V. RENORMALIZED BENDING RIGIDITY

, KR PR s The above developments now allow us to analyze the ex-

X|(s=s)+ W(e ! ¢ -1/, plicit form of the bending rigidity renormalization. Taking

first of all into account the definition df(s,s’) andZ(s,s’)
DksT G N we can write the dipolar interaction potential on the saddle
7(s,8') = [0 o(S) - el o(9)] + —e‘\““ K5 point diagonalized level in the following form:

(R)K
(39) V(B(s,s'),7(s,s')) = Vr(B(s,8'))7(s,S')
Finally we have to address the question of the reference ~Ve(B(s,S)B(s,S)T(s,S), (43

state. Assuming with sufficient generality that the referencellowing us to evaluatéK: as a function of the parameters
configuration of the chain is a straight line, thugs)=¢se,  of this interaction potential. We obtain

wheree is a constant vectdil2]. At this point we can inves-
tigate also the saddle point ®f[ry(s)] with respect taZ, the K=~ 1 f ds € |:(VR(B(S)) - Vp(B(9))B()]
new variable, which reduces to the following two equations: 2
I6(Q) 1 (avR(B<s))
= = - — -V,
i 0 or ¢=0. (39) ] ds¢ P p(B(s)) |(s)
On general groundg can be nonzero only at zero tempera- _ aVp(B( ))B 79). 44
ture, when there are no fluctuations and the chain can indeed dB(s) (s (44)

exhibit straight configurations. For any finite temperature

straight configurations are not feasible without external conlt is instructive to compare this with the analogous formula-
straints and we should rather hage 0. Taking this into tion of the problem for monopolar interactiofis?]. There it
account and solving the first of the above equations, i.e., w&as derived that

obtain
1 IVR(B(9)
_ dkgT Ke=-— | dsd———. (45)
- 4\”);(;K(CR) ' (40) 12 J B(S)

In view of this, it seems that a possible interpretation of Eq.
Let us now introduce a new parameter (44) would be that the orientational part of the interaction
AKP) potential averaged over chain conformational fluctuations
c leads to effective intersegment interactions with a repulsive
. (41) g p
DkgT as well as attractive components.

An exact evaluation of the highly nonlinear Ed4), note
that K¢ is on the left-hand side of this equation as well as
on the right-hand side, hidden #of the definitiong42), is
not feasible and we have to investigate the properties of its

solution numerically. First of all we break the evaluation of
We do not attribute much importance to this dlscrepancythe integral44) mtoytwo artsSK = 5K 1)+6K(2 defined as
With the introduction of equationg38) can be reduced to a g P c~ '
rather tame set of formulas
KP=-= J

B(s) =2¢s+ &e¥¢-1)],

§=

In D=4 £ would be simply equal the renormalized persis-
tence length. The factor 4/3 obtained =3 is a conse-

quence of the 1D ansatz, i.e., is a consequence of the ap-
proximate nature of the evaluatlon of the partition function.

ds € [Vr(x\B(9)) = Vp(k\B(9)) B(9)]

a

T(s) = €5, (42 QVR(K\/B(S)) o
These two formulas deserve some interpretation. The first of KE'=~ _f B( s) =~ Ve(kVB(s)
the above two equations obviously represents the average
size of the chain of contour lengtts’ since at the saddle an(K\uB(s))
point B(s—s')={[r(s)-r(s")]?. It is equal to the usual _T(S)B(S) T(s), (46)

Kratky-Porod expression for the average end-end distance

squared of a semiflexible chain. The second equation simplyhere we have taken into account that the interaction poten-
expresses the fact, that for a semiflexible chain the orientdial can be written as a function of the argumetjt(s)
tional correlation function, which at the saddle point equals—r(s’)|. Furthermore the lower cutoff was set equakcof
T(s—5')=(d (s)-dgr (s')), is exponentially decaying with a the order of the thickness of the chain, whose numerical

031801-6



ELECTROSTATIC CONTRIBUTION TO THE. PHYSICAL REVIEW E 70, 031801(2004

value was taken ag=1 nm. This cutoff stems from the |inear, since sKc is also hidden
breakdown of the continuum elasticity at small length scales_dkBT/[4\ 2k(Ke+ 5Ko)T.

Contrary to the monopolar ca$#?2], this cutoff is essential Let us finally introduce a new variabledefined as
and reflects the faster decay of the dipolar interactions with

in the variableg

respect to the separation compared to the monopolar case. = (@2kK®) 4\553
The next step is to write above relations in the form suitable =€ =\2ké= 3keT T3 \p (54)

for numerical evaluation. . . . .
Let us first of all introduce the following notation for the Wherehp=1/k is the Debye screening lengtti.is nothing

interaction potential:

p2 e K
VR(M) = 25 (1 + k1) = vo3fg(r),
direey 1
p2 e—Kr
Ve(n) =7 g F[3+3Kr+(,<r)2):vox5fp(,<r), (47)
€

wherefg p(u) are obviously defined as

fr(u) = e (1 +U),

—u

e
fp(u) = E(3+3u+u2). (48)
Introducing furthermore
E(z):z—1+e"Z with zzg, (49)

and setting

£=1/(\2x8), (50)

we can derive the following form foﬁK(Cl)

SK (K§>3 f dzf[fRWE(z)/B
al¢
- fa(VB(2) @QI (51)

and for 5K(Cz)

K = -

K§)5f dzi‘[ ((VB(zlf) fo(\B(2)/9)
— B
- fh( \/B(z)lg)%z)) ] e, (52

where the derivative irf; and f;, stands forf’=gf(\u)/au
and thus we have

—Uu

, e
fru) = —2—u5(3 +3u+ 1),

—u

fh(u)=- e—(15 + 151+ 6U° + U°). (53)

but the inverse reduced screeing length as introduced by
Everaerset al. [3]. Furthermore if
2K 42k K
= and §{=——_—— 55
dksT ¢ dkgT 59
then the definition of the renormalized bending rigidity
K(CR)=KC+ SK¢ can be cast into the form

(0)

KUO

=A0_
¢=¢ DkBT

( D) 1 F(2 (4“)) (56)
Because of Eq6) we can furthermore write in three dimen-
sions

_. .1 &)23[ Wy 4 L 202 }_m)
cor=0 St B P Sorei | ¢
(57)

This equation gives the functional dependencel an the
parameters of the dipolar interaction, most notakly From

the definition of{ (54) the solution of the above equation
immediately leads to the renormalized value of the persis-
tence length. The functions!)(¢) have obviously been de-
fined as

F() = f e O ATR(EVB(2) -~ To({VB@) 2B(2)],
V2(ka)l¢

o]

Fo(p = dz 2[f({VB(2) - fp(Z\B(2)

\E( ka)l{

- tH(NB2)PB(2)] €7 (58)

Figure 1 shows the dependence HfF({) on ¢ for four
different values of ka) that enters the definition d¥(¢) via

the lower bound of the integral®8). The solution of Eq.
(57) is obtained from Fig. 1 by simply looking at the inter-
section between the curves on the figure with a line parallel
to the £ axis at{!?.

A more transparent form of these equations that will be
solved numerically can be obtained if we go back to the
original variables and can thus write for the renormalized
persistence length

5L (R\3 R
LR Z O _ <|00> (ﬂkp_) [F<1><4 2Ly )
PP 42\ g 3 Mp 3 Np

(R) IEGY
L1 (42L )F@(ﬂiﬂ_ 59
12\ 3 \p 3 M\

We should again note here that the equations for the renoifhis equation is the main result of our paper. Its solution

malized bending moduluébl) and(52) are essentially non-

gives the renormalized value of the bending rigidity or

031801-7
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30F

FIG. 1. Thel+F({) Eq.(57) for four different
values ofka, viz. ka=100, 10, 1, and 0.{from
left to right). The dimensionless strength of the
dipolar interaction(xlg)(po/€g)?> was taken as 1.
At large values of the dependence is obviously
linear.

C+F (T, ka)
T

lezzicitji;]\/taelrean;tli)g;he persistence length as a function of the dipo- o — o /B(z)

_ parameters. In general, it can only be solved F(0) :J dzZ(1 + (N B(2) ———. (61)
numerically but simplified analytic solutions can be obtained 0 B(2)%?

in limited regions of the paramater phase space. ) ) ) _

It is instructive to compare these results with those de-The analysis of these equatiotthough written in a some-
rived for a polyelectrolyte chain with simple screenedWhat different, yet completely equivalent foyrhas already
Debye-Hiickel monopolar electrostatic interactions along th&een performed before and we direct the reader to that work
chain, where the fixed charges are at separati@ong the  [12]-
chain. If we formulate the results derived in in the same
language as used above, we get VI. RESULTS

We noted already that the basic equations derived for the
- renormalization of the persistence length of a semiflexible
(=094 V2xlg 2F (), (60) dipolar chain have nolsimple apalytic solution. Figures 2 and
12 2(Ak)? 3 thus present numerical solutions of E§9) for some val-
ues of parameterls(o), \p, While we always consider the case
(Ig/2)(po/€9)?=1 nnit. This last parameter sets the overall
where in this case scale of the renormalization and is not crucially significant so

40 FF T ! ! T H

FIG. 2. Renormalized persistence length Eq.
(59) for three different values dig)):zo, 10, and
1 nm (upper, middle, lower curvescircles. Also
shown are the approximate solutions obtained
from the expansiori63). The strength of the di-
polar interaction g(po/ €)% was taken as 1 nm.

®)
L® [nm]
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3[ T T T T T T T L e | T T T T gy

100
6
5
'g‘ A FIG. 3. Fit (bold line) of the renormalized
g 7 persistence length to a power »f for three dif-
2 o ferent values oﬂ_(o):l, 10, and 20 nm(lower,
By middle, and upper circlgsThe scaling exponent

obtained from the fit isx=0.75. The strength of
the dipolar interactiorlg(py/€y)? was taken as
1 nm.

w » o

N

A [nm]

we do not study its variation in detail. Two universal behav-small values of the screening length where obvio ))
iors seem to emerge. For small values of the screenenig.[© g3 valid approximation of Eq(63) capturing its domi-
lengthAp the behavior is given in Fig. 2. For large values of nant features would be
the screening length an altogether different type of behavior
is seen Fig. 3. Numerical solutions of E&9) do not show
any indications of a possible phase transition to an ordered
phase at nonzero temperatures though due to the attractive ® © . 3s( Po 2 \p
component of the dipolar interactions one might expect them Lp" =Ly + 2 \e | o (64)
to. This is completely consistent with the behavior of the €0
flexible chain[8].
Let us investigate if we can understand the two types of

behavior depicted on Figs. 2 and 3 with simple analyticalryis result could be seen as the dipolar chain equivalent of
arguments. What we basically need to figure out is whathe Qgijk-Skolnick-Fixman[2] result for the monopolar
would be the typical contributions to the integréli) that  cnain. |n that case the behavior of the persistence length at
enter the equation for the renormalized bending rigidity Eq.g 1 yalues of the screening lengthl )~)\é. The differ-

(59). It is instructive to consider first the case of small ence between this result and H64) is purely due to the

screening lengths. Here the main contribution to the integral§wifter decay of the dipolar interaction potential vs separa-
Eq. (58) along the polyelectrolyte comes from short Iengthtionr in monopolar case™ and in dipolar case 3. This can

sca!es. In this limit one derives tha(s) =’ and Ioc_ally the be seen crudely as follows: since the interaction potential for
chain thus behaves in the Kratky-Porod s8] This leads  yhe gipolar chain falls off twice as fast as the monopolar

to the following approximate form of({): potential the OSF reasoning should give for the electrostatic

persistence length3\;2=\%. The zero in the exponent

2
F(2) :§3<F(1)(§) +§—F(2)(§)) translates as usual into the log term, which is exactly Eq.
12 (64). The way the approximate result E(3) fares when

— (V21 (z (z z\? [z\® compared with the full numerical solution of E¢9) is
-18-18=-9 +| =
v A

’/_

\

=22 shown in Fig. 2. Obviously the approximaton is not bad for
small enough screening length but becomes progressively
(62)  worse for larger bare persistence lengths and larger screen-
ing. The same reasoning applied to the general multipole of
ordern would lead to the electrostatic persistence length with
la( Po\2( [~ 25 - M(xa) + (ka)2]e <™ scaling)\'D_(”'z.). One can thus hardly expect any electrostatic
E(%) ( 12 renormalization effects above dipolar.
Next we consider the case of latgescreening lengths.
Here the main contribution to the integrals8) along the
_EEl(Ka) ' (63) polyelectrolyte comes from larg® length scales. In this
case the local properties of the chain are characterized by an
whereE;(u) is the standard exponential integral with a lim- essentially free flight behavidn.0] of the chain, leading to
iting form of lim,_,oE;(u)=—y—=In u+O(u). Except for very  B(s)=2&s. Here we can derive

[~

2(ka)l¢ £ \

Equation(59) in this very same limit then assumes the form

(R = O _
Lp _Lp
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2 Ry O iq ai : o
F(O) =3[ FY) + g_,:(z)(g) whetherL “/L "~ is either large or small. Agaln_the differ
12 ence between these results and E3) and (68) is purely
U2 due to the swifter decay of the dipolar interaction potential
- _ dz22(2 + 25& +%2) Vs separation; monopolar casé and dipolar case™3. This
P diff . . (Ry-2
2(ka)ig ifference introduces an additional factor )Xg® (\p/ L")
41 into the second term of Eq66), wherefrom the exponents
=——=r"3, (65)  B=3/4 or 3 can belerived straightforwardly. It is thus clear
15 that the behavior of the electrostatic part of the persistence
which leads to the following approximate form of E&9): length of a monopolar and dipolar chain are intimately re-
— _3 lated in both relevant limits of weak and strong screening.
LR < |0 |_B_ Po 24_1 ﬂk@ Applying again the same reasoning to the general multipole
P P a2\e/ 15\ 3 Ap of ordern would lead to the electrostatic persistence length

5 . with scaling8=(7-2n) or 8=(7-2n)/(6-n). Again electro-
() Po|“( Ao static renormalization effects above dipolar are very small.
=194+0.0714 2 (66) a fiects ab
P |_(p> The remaining question in this context would be how ro-

. . . . ) bust are the two regimes derived above that lead to the ap-
This equation can(or;av_e two pos_s'b(llg SOIH)E'OHS depending Ofyoximate forms(64) and (67)? In assessing the range of
the magnitude of . First of all if L,">L ", meaning that 5|idity of these different approximations we can invoke a
the value of the persistence length is determined mostly byglated situation already encountered in the case of a mo-

the electrostatic interactions along the chain, we have nopolar chain[12]. In that system extensive simulations
o\ 2|44 » [3-5] left no doubt that the OSF regime, corresponding in the
LE,R) =0.0 |B(—> N (67)  context of the dipolar chain to E@64), is very robust and

extends over a broad region of the parameter phase space.
This approximate result is nicely exhibited also in Fig. 3 The sub-OSF laws for the electrostatic renormalization of the
where it is seen how the exact numerical solutions of Eqpersistence length giving in the vicinity of 1 were effec-
(59) approach the above scaling limit for sufficiently large tively ruled out. Translating this into the context of the dipo-
values of the screening length with the scaling exponent extar chain would make the range of validity fo E@S6) fairly
actly equal to the above prediction. The fo(6%) is thus a  narrow. But these are all conjectures since we are aware of
limiting law for the electrostatic part of the persistenceno detailed simulations for semiflexible dipolar chains, set-
length valid universally for large screening lengths and smalting aside the extensive work by Muthukumar on fiexible
L9, The situation corresponding to E(7) is encountered chain[8], that would match the superb work performed re-
in chains of polarized particles of an electrorheological fluid.cently in the context of the monopolar ch4+3)].
These particles indeed interact via dipolar forces and by defi-
nition in that case.? is not only small but vanishes identi- VIl. CONCLUSIONS

cally. One should be, however, aware, especially in taking . . I
the no-screening limit, that in the above calculation by as- We presented an analysis of the electrostatic contribution

. S o the persistence length of a semiflexible screened-dipolar
isnu?]ztgls:gﬁllength of the chain is always the largest Iengtli‘:hain. The formal context of our analysis is provided by the

In the other case with a predominant contribution of thel/D—.expans!on method that has been already successfully
. R (0 . . .. “applied to different problems of polymer physid,18,19.
bare persistence length, !'d‘r .NLD ’ t_hus_ in the limit 1/D expansion is closely related to different variational
where the_ strength of t_he d_|pq ar mteraf:tlon is very small, Wechemes that have been amply applied to the problem of
end up with the following limiting form: electrostatic rigidity of charged polymer20-24. What
R 1 © Po\2( Ap \° singles out our approach is the fact that we work consistently
Ly =Lp" +0.07lg % LO (68)  with a semiflexible Hamiltonian and enforce the inextensibil-
P ity constraint on a global level. This leads to some discrep-
This limiting form of the persistence length is only valid in ancies between variational formulations andigxpansion
the sense of a perturbation expansion when electrostatic efrethod. However, the robustness of the OSF regime tran-
fects are vanishing, thus having a very small range of validspires quite clearly from the I¥ expansion in the context of
ity, and contrary to the scaling law64) and(67), cannot be a monopolar polyelectrolyte, giving us some confidence that
viewed in itself as a real scaling law. Due to its small rangean analogous result for a dipolar chain would have the same
of validity it cannot be discerned in the numerical solutions,range of validity.
Figs. 2 and 3. The main step in our formalism was to find an appropriate
These last two results could again be compared with thevay to treat the orientational dependence of the intersegment
expressions valid for the monopolar chain in the same reinteraction potential. This has been accomplished by intro-
gions of the parameter space and derived within the samaucing additional auxiliary fields that in their turn lead to
theoretical frameworK12]. In that case the behavior of the new saddle-point equations. Though the derivation of the
persistence length at large values of the screening lengttenormalized elasticity is as a consequence, more compli-
would beL? ~\5, whereg is either 7/6 or 7, depending on_cated, it leads to manageable and transparent results. The
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main conclusion based on these results would be that theere in the case of a monopolar charged chain. As for the
dependence of the electrostatic persistence length on thlexperimental situation where repeated claims of a sub-OSF
screening length for a dipolar chain is much less pronouncetegime have been voicd@5,26, one wonders if they could
then for a monopolar chain. This is clearly seen in the case dh fact be a consequence of a specific association of the mo-
large as well as small screening. Also it appears that a sembile counterions with fixed charges on the polyelectrolyte
flexible chain does not give rise to any localized structures abackbone producing a system not far from the model dipolar
those described by Muthukumg8] in the context of a flex- chain analyzed in this work. In order to test this hypothesis
ible chain. This is indeed not surprising since the chain elasene would have to estimate independently the effective di-
ticity is obviously strong enough to prevent extensive loop-pole moments of the chain segments. The results presented in
ing of the chain that would lead to local aggregation of thethis work could then serve as a guideline to differentiate
chain based on the attractive component of the dipolar intetbetween monopolar and dipolar OSF-like behavior.

action. This attractive component is also not strong enough
to lead to any type of phase transition to an ordered state at
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